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relation based on free and forced convection sphere, New York (I 983). 

4. CONCLUSION 

Numerical results have been reported for two-dimen- 
sional, steady free, forced and mixed convection from a Bush- 

mounted, isoflux heat source on one vertical wall of the 
channel the walls of which are otherwise adiabatic. In the 
free convection regime, the flow may separate from the 
unheated wall at high Grashof numbers, and if the channel 
is long, it may reattach at a distance far away from the heat 
source. The recirculating flow, however, disappears as the 
Reynolds number increases. The strength and extent of the 
convective cell depend strongly on Grashof and Reynolds 
numbers and show the possibility of flow entrainment at the 
exit end if the channel is short. 

The heat transfer rate is also a strong function of Grashof 
and Reynolds number. Depending on the Grashof number, 
it may be either lower or higher than the vertical plate solu- 
tions. However, in the forced convection regime, it is always 
lower than the flat plate results. The mixed convection Nus- 
selt numbers can be easily predicted by a composite relation 
based on the free and forced convection values (equation 
(14)). The present problem, however, does not fall into the 
category for which free and mixed convection Nusselt num- 
bers can be predicted from the forced convection correlations 
as proposed by Ortega and Moffat for discretely heated 
channels [2]. Also, these results neither support the theory 
that the Nusselt numbers for the present problem are always 
lower than the vertical plate solutions in the free convection 
regime, nor do they agree with the observation of several 
authors that the discrete heating always results in higher 
heat transfer rates. Finally, we expect that numerical results 
reported here will provide a basis for better understanding 
of the effects of shrouding and wall protuberances, as well as 
the influence of both the upstream and downstream adiabatic 
sections. 
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INTRODUCTION 

THE PURPOSE of this note is to report several laminar film 
condensation results that apply to a basic geometric con- 
figuration-the plane horizontal surface that faces upward. 
Reviews of the laminar film condensation field [l-3] have 
shown that solutions have been developed for a wide variety 
of wall shapes and orientations, e.g. vertical and inclined 
plates, horizontal and inclined cylinders, a sphere, and sev- 
eral types of rotating surfaces. It has been recognized also 
that the phenomenon of condensation on a horizontal flat 
surface can behave in more than one way, depending on 

whether the surface faces upward or downward. The case of 
the downward facing plate was treated by Gerstmann and 
Griffith [4], who showed that the condensate film develops a 
bumpy surface (cf. the Taylor instability) from which drop- 
lets leave the film intermittently. 

The upward facing plate is discussed by Rohsenow [l], but 
only under the assumption that the plate serves as the bottom 
surface for a vessel with adiabatic vertical walls. In that 
case, the lateral walls prevent the horizontal motion of the 
condensate, and the time-dependent growth of the film thick- 
ness is described by the one-dimensional (vertical) con- 
duction solution associated with theclassical Stefan problem. 
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NOMENCLATURE 

dimensionless parameter, equations (26), (27) 
and (29) 
specific heat at constant pressure 
diameter of horizontal disc, Fig. 1 
function, equation (3) 
gravitational acceleration 
enthalpy of saturated liquid 
latent heat of condensation, or vaporization 
modified latent heat of condensation, or 
vaporization 
enthalpy of saturated vapor 
disc-averaged heat transfer coefficient, equation 
(19) 
H-averaged heat transfer coefficient, equation 
(21) 
L-averaged heat transfer coefficient, equation 
(15) 
height of vertical surface, Fig. 2 
enthalpy flow rate, equation (8) 
thermal conductivity 
width of horizontal strip, Fig. 1 
condensation flow rate on disc of radius r, 
equation (16) 
disc Nusselt number, equation (19) 
vertical surface Nusselt number, equation (21) 
horizontal strip Nusselt number, equation (15) 
pressure in the liquid, equation (3) 
pressure in the vapor, equation (4) 
total heat transfer rate into the strip, per unit 
length of strip, equation (13) 
radial position 

i 
T sat 

TW 
u 

x 

Y 

z 

Greek svmbols 

dimensionless radial position, equation (18) 
saturation temperature, and temperature of 
liquid-vapor interface 
temperature of solid surface 
horizontal liquid velocity, pointing toward the 
edge 
horizontal position across the strip, Fig. 1 
vertical position above the horizontal surface, 
Fig. 1 
vertical position down (along) the vertical 
surface, Fig. 2. 

condensation flow rate collected on the 
horizontal strip, equation (7) 
thickness of horizontal film 
dimensionless film thickness on the strip, 
equation (11) 
dimensionless film thickness on the disc, 
equation (18) 
condensation flow rate on the vertical surface, 
equation (23) 
thickness of vertical film, equation (24) 
viscosity 
dimensionless horizontal position, equation (11) 
dimensionless group, equation (22) 
density. 

Subscripts 
1 liquid 
V vapor. 

A third horizontal plate configuration is the upward facing 
plate with free edges. This geometry forms the subject of this 
note. In this configuration, the condensate flows away from 
the central region of the plate, and spills over the edge. 
The film reaches a steady state, as the rate at which vapor 
condenses on the surface of the film is balanced by the liquid 
flow rate integrated along the edge. These two fundamental 
characteristics-the tangential flow of liquid, and the steady- 
state thickness of the film-distinguish this configuration 
from the bottom-of-vessel case treated in the handbook [I]. 

*------ 

THE HORIZONTAL STRIP 

Consider first the two-dimensional geometry of Fig. 1, in 
which the long dimension of a strip of width L is oriented in 
the direction perpendicular to the plane of the figure. The 
cold plate (at temperature r,) faces an atmosphere of stag 
nant saturated vapor (which is at temperature T,,,). Of inter- 
est is the total rate of condensation on the length L, or the 
heat transfer rate into the plate, per unit length in the direc- 
tion normal to the figure. 

I I 

0 l-12 x 

I I 
0 D/2 r 

FIG. 1. The film condensate on a horizontal strip of width L, or a disc of diameter D. 
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The following analysis is of the same simplified type (i.e. 
Nusselt type) as that found in most textbooks for the vertical 
plate problem [5], therefore we can review only the key steps 
and then examine the results. The liquid film is treated as a 
boundary layer with negligible inertia effect, therefore the 
momentum equations are 

0 = -g-p,,. (2) 

Integrated, equation (2) reads 

P(.x, v) = - p,g.IJ +f(x) (3) 

for which f(x) is determined by matching the liquid pressure 
to that of the vapor at their mutual interface (y = 6). The 
pressure distribution in the vapor is hydrostatic 

P,,,(y) = -pVgy+constant (4) 

therefore, by writing &x,6) = P,,,(6) we determine f(x) 
and, more importantly 

;= (PI-P&;. (5) 

Together, equations (1) and (5) allow us to determine the 
horizontal velocity profile 

(6) 

which is based on assuming no slip at the solid wall, and zero 
shear at the liquid-vapor interface. The local liquid flow rate, 
per unit length normal to the plane of Fig. 1, is 

s 6 

w = PI udy = --$(p,-_~~)6~$ (7) 
0 I 

Under the assumption that the temperature distribution 
across the film is linear, the enthalpy flow rate carried by the 
condensate film through the plane x = constant is 

Rx) = [h,-ac,.l(T,,,-T,)lr(x). (8) 
The first law statement for the control volume of size 
(6) x (dx) reduces to 

h& df = ; (T,, - T,) d.x (9) 

in which h& = h, + jcpJ (T,,, - T,). Combined with the 
expression for T(x) derived earlier, equation (9) becomes an 
equation for the film thickness function 

where the dimensionless variables are 

The variables can be separated in equation (IO) by relying 
on the auxiliary function A = dg4/dt. Inte rating once, and 
using the midplane condition that 8= &! 0 (unknown) at 
5 = 0, where, due to symmetry, A = 0, we obtain 

(12) 

The final step is the integration of this equation, by properly 
choosing the midplane thickness d, so that the g(t) solution 
satisfies the edge condition @l/2) = 0. Worth noting is that 
the condition of zero film thickness at the edge of the plane 
does not mean that the liquid flow rate vanishes at the edge. 
On the contrary, one can easily verify that the flow rate 
reaches its largest (finite) value at the edge. My reason for 

using the zero-thickness condition at the edge is that the 
equivalent of this condition was used in the boundary layer 
treatment of single-phase natural convection on a cold 
upward facing plate, where it was shown that the resulting 
solution agrees well with empirical results [6]. 

The integration of equation (12) was eerform_ed n_umeri- 
tally by marching in 7000 equal steps of 6, from 6 = 6, to 0. 
This means that the corresponding steps in 5 have a much 
higher density near the edge than in the central section of 
the plate. The film thickness solution g(t) is presented as 
S/L in Fig. I, in which the correct choice for the midplane 
thickness, $, = 1.105, is accurate within 0.5%. 

The total heat transfer rate into the L-wide plate is 

= 2k,L(T,,, - Tw) 
h;,p,(p, -p,)g “’ “’ dir 

I_ 
k,(T,,, 

----I 
- ~-,)P,L IC ” 3. 

(13) 

The numerical value of the integral shown on the right-hand 
side turns out to be 0.539. The total rate of condensate is 
proportional to the heat transfer rate absorbed by the plate 

2r(L) = ;;. 
fE 

(14) 

These conclusions can be summarized in dimensionless form 
by defining a Nusselt number based on the L-averaged heat 
transfer coefficient tiL 

The main difference between this solution and Nusselt’s cor- 
responding Nu, formula for laminar film condensation on a 
vertical plate is the exponent of the dimensionless group 
formed on the right-hand side. In the vertical plate case, that 
exponent is $ (see equation (2 I) later in this note). 

THE HORIZONTAL DISC 

A completely analogous analysis can be made for the 
laminar film of condensate on a circular plate of diameter D. 
In what follows we review only the key results, beginning 
with the radial liquid flow rate through the cylindrical cut of 
radius r 

The first-law analysis of the ring-shaped control volume of 
height 6, radius I, and radial thickness dr leads to a differen- 
tial equation for the film thickness 

(17) 

with the following definitions : 

Equation (17) was integrated numerically subject to the 
conditions d$/di = 0 at i = 0, and 6 = 0 at i = 1. The i 
domain was divided into 7000 steps of equal size, and the 
calculation started from f = 0, where a value for the film 
thickness 

6 
5,) had to be assumed. The proper value turned 

out to be 0 = 1.268. 
The resulting solution for the film thickness is shown in 

Fig. 1. This solution is presented in terms of S/D and r/D, to 
invite a comparison with the film that would build on a 
horizontal strip of the same width as D. On the disc, the film 
is noticeably thinner because the condensate can run in all 
the directions away from the central region. 
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The Nusselt number based on thedisc-averaged heat trans- 
fer coefficient Lo is 

Nu D = @ = 1.368 
k, 

h&P,(Pl-P”W “5, 
k,(T,,- T,)P, 1 (19) 

This formula is similar to the GL formula obtained for the 
horizontal strip, equation (15). The larger numerical factor 
on the right-hand side of equation (19) is a consequence of 
the fact that on the disc the film is thinner than on a hori- 
zontal strip of the same width as D. 

The total condensation rate generated by the upward fac- 
ing disc, ti(D/2), equation (16), is proportional to the total 
heat transfer rate absorbed by the disc, cf. equation (19) 

THE VERTICAL SLAB WITH HORIZONTAL 
TOP SURFACE 

The upward facing surfaces treated until now may serve 
as ‘roofs’ for three-dimensional objects surrounded by satu- 
rated vapor (Fig. 2). It is important to note that the con- 
densation on the horizontal top surface affects the total rate 
of condensation on the body in fwo ways. It contributes 
directly through the flow rate estimated based on equation 
(14) or equation (20) and indirectly by thickening the film 
that coats the vertical lateral surface. The indirect effect 
forms the subject of this section. 

The classical result for laminar film condensation on a 
vertical surface of height H is [3-51 

Ku, = F = 0.943IIi4 (21) 
I 

in which the dimensionless group I&, is based on H as the 
length scale 

(22) 

This result applies also to a curved vertical surface (e.g. Fig. 
2, right), provided the thickness of the vertical film is small 
relative to H. 

The analytical derivation of equation (21) has historically 
been based on the assumption that the thickness of the ver- 
tical film A(z) is zero at the top edge of the vertical surface. 
In the present case, the starting thickness of the vertical tilm 
is finite, A(O) = A,, because of the condensate flow generated 
by the top surface. Omitting most of the analysis, we record 
only the formulas for the vertical flow rate down the side 

the thickness of the vertical film 

and, finally, the H-averaged heat transfer coefficient 

fiHH _ = 0.94311$4[(l+B)“4-B3’4] 
k, 

where the group B is shorthand for 

(23) 

(24) 

(25) 

(26) 

By comparing equation (25) with equation (21), we see 
that the quantity in square brackets in equation (25) accounts 
for the film-thickening effect of the liquid collected by the 
top surface. The B parameter can be calculated by writing 
that the horizontal flow that spills over the edge, I(L), is the 
same as the starting flow rate of the vertical boundary layer. 
This last equation pinpoints the value of A,, and, in the end, 
the value of the B parameter needed in the heat transfer 
coefficient formula (25) : 

B = 0.475 ; r’sfI,l:ls. 
0 

(27) 

The factor in the square brackets in equation (25) is less 
than 1, regardless of the value of B. In conclusion, the indirect 
effect of the condensate formed on the top surface is to 
partially inhibit the lilm condensation process that occurs on 
the vertical lateral surface. 

15 

I$ Ii-I .I,,5 

n or [!JJ )3;‘15 

FIG. 2. The reduction in the vertical-surface condensation rate, caused by the liquid flow collected on the 
top surface. 
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THE VERTICAL CYLINDER WITH 
HORIZONTAL TOP SURFACE 

the disc. This effect is presented graphically in Fig. 2, the 
abscissa of which reveals a new dimenrionkss orom that CR” ~~. _.~ ..--..._...__- n_ _-r . .._. _.... 

Equation (25) describes also the H-averaged heat transfer be written alternatively as (n/H)H; I;12 

coefficient on the vertical surface of the cylinder shown on 
the right-hand side of Fig. 2. What changes in the present 
case is only the expression for parameter B, which follows 
from the condition of mass continuity over the circular edge ‘. 
of the top surface 

(28) *. 

3. 
After using equations (l9), (20), (23) and (24), we obtain 

L) 4/s 
B = 0.259 - 

0 
H”“. 

H H 

This B expression is similar to the one for the vertical 
face of a slab with a flat top, equation (27). Again, the effect 

5, 

of the flow rate of condensate produced by the disc-shaped 
top surface is to decrease the condensation rate that would 

6, 

have been produced by the vertical surface in the absence of 
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1. INTRODUCTION 

MIXED convection problems involving Iaminar boundary 
layers have been treated in a variety of ways. Most solutions 
found thus far have been valid only over a limited range 
of the buoyancy parameters, i.e. they represent situations 
perturbed from either the pure forced or natural convection 
cases. Two sets of solutions must be obtained in order to 
have valid results for the entire range. Some of the early 
studies on mixed convection have dealt only with similarity 
solutions. For example, Sparrow et al. [l] pointed out that for 
an isothermal wedge, a similarity solution only existed for 
a wedge angle of 120”. Mixed convection for the vertical and 
the horizontal plate have also been discussed by Schneider 
[2], Lloyd and Sparrow [3], Sparrow and Minkowycz [4], 
Chen et al. [5], Ramachandran et al. [6] and Raju et al. [7]. 
For the horizontal plate, the momentum equation in the 
direction normal to the plate must be accounted for in order 
to obtain meaningful results. The integral of the temperature 
function adds complexity to the numerical solution when 
this momentum equation is included. Solution techniques 
have been mostly local similarity or local non-similarity in 
nature. Wedge flow was analyzed by Gunness and Gebhart 
[8]. They perturbed the Falkner-Skan equation for a situ- 
ation including the buoyancy effects in directions both along 
and normal to the surface. Their perturbation quantities, 
however, were related to the buoyancy parameter which 
limited the results to relatively small effects. Mixed con- 
vective flow for inclined plate and sphere geometries were 
investigated by Mucoglu and Chen [9, lo]. -Both local non- 
similarity [I I, 121 and Keller and Cebeci’s [13] finite-differ- 
ence algorithm were used to solve the laminar boundary 

layer equations which represented the system perturbed from 
forced and/or free convection. A good reference which sum- 
marizes the literature for mixed convection is the new text of 
Gebhart et al. [14]. 

In the present study, an analysis is made for mixed convection 
in laminar boundary layer flow over two-dimensional or 
axisymmetric isothermal surfaces with arbitrary contour. 
The laminar boundary layer equations for mixed convection 
are transformed and formulated in such a way that they are 
valid over the entire range of concern, from pure forced 
convection to pure natural convection. The MerkkChao 
series [15, 161 for two parameters is developed in this paper 
and is applied to obtain the solution for mixed convection. 
By introducing this two-parameter MerkkChao series into 
the transformed boundary layer equations, there results a 
set of ordinary differential equations with two parameters 
which implicitly absorb the geometry and orientation of the 
surface. Therefore, by assigning numerical values to these 
parameters, this set of equations can be solved so that the 
results for the flow field and the heat transfer can be expressed 
in terms of universal functions. 

The purpose of this study was (i) to obtain a set of trans- 
formations which would allow the boundary layer equations 
to be solved for the entire mixed convection range, (ii) to 
adapt the Merk-Chao expansion to these mixed convection 
equations, and (iii) to formulate modified definitions for the 
friction factor group and the Nusselt number group which 
are finite for the full mixed convection range. Section 2 of 
this paper illustrates the development of the transforms plus 
it presents the expansion used. A comparison of the solutions 
to the resultant equations with previous investigations is 
covered in Section 3. Finally, the modified definitions for 


